CHAPTER 18ENTROPY, FREE ENERGY, AND EQUILIBRIUM

1. Calculate ΔG° of formation, in kJ/mol, for H₃PO₄. $4P(s) + 5O_2(g) \rightarrow P4O10(s)$ $H_2O(l) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$ $P_4O_{10}(s) + 6 H_2O(l) \rightarrow 4H_3PO_4(l)$ $P(s) + \frac{3}{2} H_2(g) + 2O_2(g) \rightarrow H_3PO_4(l)$

 $\Delta G^{\circ} = -269.8 \text{ kJ/mol}$ $\Delta G^{\circ} = 237.2 \text{ kJ/mol}$ $\Delta G^{\circ} = 630.2 \text{ kJ/mol}$ $\Delta G^{\circ}_{f} = ?$

a. -1063 <u>b. -265.7</u> c. 1063 d. 265.7

2. Which quantity has a value of zero for an element in its standard state?

- a. ΔH^{o}_{f}
- b. S^o
- c. ΔG^{o}_{f}
- d. <u>both a and c</u>

3. When ammonium nitrate dissolves in water, the solution becomes cold. We can conclude the following:

- a. ΔH^{o} is positive and ΔS^{o} is positive
- b. ΔH^{o} is positive and ΔS^{o} is negative
- c. ΔH^{o} is negative and ΔS^{o} is negative
- d. ΔH^{o} is negative and ΔS^{o} is positive

4. Which of these species would you expect to have the lowest standard entropy (S°) ?

- a. CH4(g)
- b. <u>HF(g)</u>
- c. NH₃(g)
- d. $H_2O(g)$

- 5. Which of these species has the highest entropy (S°) at 25°C?
 - a. CH₃OH(l)
 - b. <u>CO(g)</u>
 - c. MgCO₃(s)
 - d. H₂O(l)

6. Calculate ΔS° at 25°C for the reduction of PbO(s), 2PbO(s) + C(s) \rightarrow 2Pb(s) + CO₂(g) given these absolute entropies: S° (J/K·mol) : PbO(s) 69.45, C(s) 5.7, Pb(s) 64.89 , CO₂(g) 213.6

- a. +198.8 J/K·mol
- b. $-203.3 \text{ J/K} \cdot \text{mol}$
- c. $+488.0 \text{ J/K} \cdot \text{mol}$
- d. +203.3 J/K·mol

7. HI has a normal boiling point of -35.4° C, and its Δ Hvap is 21.16 kJ/mol. Calculate the molar entropy of vaporization (Δ Svap).

- a. 598 J/K·mol
- b. 0.068 J/K·mol
- c. $68.6 \text{ J/K} \cdot \text{mol}$
- d. 89.0 J/K·mol

8. A negative sign for ΔG indicates that, at constant T and P,

- a. the reaction is exothermic.
- b. the reaction is spontaneous.
- c. the reaction is endothermic.
- d. ΔS must be > 0.
- 9. Hydrogen peroxide (H₂O₂) decomposes according to the equation

$$H_2O_2(l) \to H_2O(l) + 1/2O_2(g).$$

Calculate Kp for this reaction at 25°C. ($\Delta H^{\circ} = -98.2 \text{ kJ/mol}$, $\Delta S^{\circ} = 70.1 \text{ J/K} \cdot \text{mol}$)

- a. $1.3 \ge 10^{-2}$
- b. 20.9
- c. 3.46×10^{17}
- d. 7.5×10^{20}

10. Determine the equilibrium constant (Kp) at 25°C for the reaction

 $CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$

 $\Delta G^{\circ} = -28.5 \text{ kJ/mol.}$

- a. 2.9 x 10⁻⁶⁰
 b. x 10⁻⁴
- c. 1.2
- d. <u>x 10^5 </u>

Calculate ΔG° for the reaction $3NO_2(g) + H_2O(l) \rightarrow 2HNO_3(l) + NO(g)$.

	ΔG°_{f} (kJ/mol)
$H_2O(l)$	-237.2
HNO ₃ (l)	-79.9
NO(g)	86.7
$NO_2(g)$	51.8

a<u>. 8.7 kJ/mol</u>

b. 192 kJ/mol

c. –414 kJ/mol

d. –192 kJ/mol

For the reaction $H_2(g) + S(s) \rightarrow H_2S(g)$, $\Delta H^\circ = -20.2 \text{ kJ/mol}$ and $\Delta S^\circ = +43.1 \text{ J/K} \cdot \text{mol}$. Which of the following statements is *true*?

- a. The reaction is only spontaneous at low temperatures.
- b. The reaction is spontaneous at all temperatures.
- c. ΔG° becomes less favorable as temperature increases.
- d. The reaction is spontaneous only at high temperatures.