CHAPTER 18ENTROPY, FREE ENERGY, AND EQUILIBRIUM

1. Calculate $\Delta \mathrm{G}^{\mathrm{o}}$ of formation, in $\mathrm{kJ} / \mathrm{mol}$, for $\mathrm{H}_{3} \mathrm{PO}_{4}$.
$4 \mathrm{P}(\mathrm{s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{P} 4 \mathrm{O} 10$ (s)
$\Delta \mathrm{G}^{\circ}=-269.8 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{l})$
$\Delta \mathrm{G}^{\circ}=237.2 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{G}^{\circ}=630.2 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{P}(\mathrm{s})+3 / 2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{l})$
$\Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ}=$?
a. -1063
b. -265.7
c. 1063
d. 265.7
2. Which quantity has a value of zero for an element in its standardstate?
a. $\Delta \mathrm{H}^{\mathrm{o}}{ }_{\mathrm{f}}$
b. S^{0}
c. $\Delta \mathrm{G}^{\mathrm{o}}{ }_{\mathrm{f}}$
d. both a and c
3.When ammonium nitrate dissolves in water, the solution becomes cold. We can conclude the following:
a. $\Delta \mathrm{H}^{\circ}$ is positive and $\Delta \mathrm{S}^{\circ}$ is positive
b. $\Delta \mathrm{H}^{\circ}$ is positive and $\Delta \mathrm{S}^{\circ}$ is negative
c. $\Delta \mathrm{H}^{\circ}$ is negative and $\Delta \mathrm{S}^{\circ}$ is negative
d. $\Delta \mathrm{H}^{\circ}$ is negative and $\Delta \mathrm{S}^{\circ}$ is positive
3. Which of these species would you expect to have the lowest standard entropy $\left(\mathrm{S}^{\circ}\right)$?
a. $\mathrm{CH}_{4}(\mathrm{~g})$
b. $\underline{\mathrm{HF}(\mathrm{g})}$
c. $\mathrm{NH}_{3}(\mathrm{~g})$
d. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
4. Which of these species has the highest entropy $\left(\mathrm{S}^{\circ}\right)$ at $25^{\circ} \mathrm{C}$?
a. $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
b. $\mathrm{CO}(\mathrm{g})$
c. $\mathrm{MgCO}_{3}(\mathrm{~s})$
d. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
5. Calculate $\Delta \mathrm{S}^{\circ}$ at $25^{\circ} \mathrm{C}$ for thereduction of $\mathrm{PbO}(\mathrm{s}), 2 \mathrm{PbO}(\mathrm{s})+\mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{~Pb}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})$ given these absolute entropies: $\mathrm{S}^{\circ}(\mathrm{J} / \mathrm{K} \cdot \mathrm{mol}): \mathrm{PbO}(\mathrm{s}) 69.45, \mathrm{C}(\mathrm{s}) 5.7, \mathrm{~Pb}(\mathrm{~s}) 64.89$, $\mathrm{CO}_{2}(\mathrm{~g}) 213.6$
a. $+198.8 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
b. $-203.3 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
c. $+488.0 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
d. $+203.3 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
6. HI has a normal boiling point of $-35.4^{\circ} \mathrm{C}$, and its Δ Hvap is $21.16 \mathrm{~kJ} / \mathrm{mol}$. Calculate the molar entropy of vaporization (Δ Svap).
a. $598 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
b. $\quad 0.068 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
c. $\quad 68.6 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
d. $\quad 89.0 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
7. A negative sign for $\Delta \mathrm{G}$ indicates that, at constant T and P ,
a. the reaction is exothermic.
b. the reaction is spontaneous.
c. the reaction is endothermic.
d. $\Delta \mathrm{S}$ must be >0.
8. Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ decomposes according to the equation

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) .
$$

Calculate Kp for this reaction at $25^{\circ} \mathrm{C} .\left(\Delta \mathrm{H}^{\circ}=-98.2 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{S}^{\circ}=70.1 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\right)$
a. $\quad 1.3 \times 10^{-2} 1$
b. 20.9
c. 3.46×10^{17}
d. 7.5×10^{20}
10. Determine the equilibrium constant (Kp) at $25^{\circ} \mathrm{C}$ for the reaction
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
$\Delta \mathrm{G}^{\circ}=-28.5 \mathrm{~kJ} / \mathrm{mol}$.
a. 2.9×10^{-60}
b. $\times 10^{-4}$
c. 1.2
d. $\quad \underline{10^{5}}$

Calculate $\Delta \mathrm{G}^{\circ}$ for the reaction $3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{l})+\mathrm{NO}(\mathrm{g})$.

	$\underline{\Delta \mathrm{G}_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-237.2
$\mathrm{HNO}_{3}(\mathrm{l})$	-79.9
$\mathrm{NO}_{(\mathrm{g})}$	86.7
$\mathrm{NO}_{2}(\mathrm{~g})$	51.8

a. $8.7 \mathrm{~kJ} / \mathrm{mol}$
b. $192 \mathrm{~kJ} / \mathrm{mol}$
c. $-414 \mathrm{~kJ} / \mathrm{mol}$
d. $-192 \mathrm{~kJ} / \mathrm{mol}$

For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}), \Delta \mathrm{H}^{\circ}=-20.2 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}^{\circ}=+43.1 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$.
Which of the following statements is true?
a. The reaction is only spontaneous at low temperatures.
b. The reaction is spontaneous at all temperatures.
c. $\Delta \mathrm{G}^{\circ}$ becomes less favorable as temperature increases.
d. The reaction is spontaneous only at high temperatures.

